Emergence of a novel drug resistant H7N9 influenza virus: Evidence based clinical potential of a natural IFN-α for infection control and treatment
Emergence of a novel drug resistant H7N9 influenza virus: evidence based clinical potential of a natural IFN-α for infection control and treatment

Qinfang Liu1, Jingjiao Ma1, David R Strayer2, William M Mitchell3, William A Carter2, Wenjun Ma1 and Juergen A Richt*1

1Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), Kansas State University, Manhattan, KS 66506-5601, USA
2Hemispherx Biopharma, Inc., Philadelphia, PA, USA
3Vanderbilt University, Nashville, TN, USA
*Author for correspondence: Tel: +1 785 532 2793 Fax: +1 785 532 3373 jricht@ksu.edu

The novel avian H7N9 influenza virus has caused more than 130 human infections with 43 deaths (as of September, 2013) in China. Because of the lack of existing immunity against H7 subtype influenza viruses in the human population and the absence of a licensed commercial vaccine, antiviral drugs are critical tools for the treatment of infection with this novel H7N9. Both M2-ion channel blockers and neuraminidase inhibitors are used as antiviral drugs for influenza infections of humans. The emerging H7N9 viruses are resistant to the M2-ion channel blockers because of a S31N mutation in the M2 protein; additionally, some H7N9 isolates have gained neuraminidase R292K substitution resulting in broad resistance to neuraminidase inhibitors. In this study we report that Alferon N can inhibit wild type and 292K H7N9 viruses replication in vitro. Since Alferon N is approved for clinical use, this would allow a rapid regulatory approval process for this drug under pandemic threat.

KEYWORDS: Alferon N • antiviral drug • H7N9 • influenza • neuraminidase inhibitors • oseltamivir resistance • tamiflu

Emergence of the novel H7N9
A new deadly influenza A H7N9 strain of avian influenza virus, first identified in China in March 2013 with human and avian cases, has been observed in various eastern and inland Chinese provinces [1,2]. There have been a total of 132 confirmed cases with 43 deaths with people over 60 appearing to be more susceptible to the H7N9-associated severe respiratory disease [3–6]. Patients infected by H7N9 have exhibited viral pneumonia, acute kidney failure, acute respiratory distress syndrome, diffuse intravascular coagulation and septic shock. Although the H7N9 subtype can be highly virulent in humans, it exhibits low pathogenicity in avian hosts, perhaps due in part to the absence of a multibasic amino acid sequence at the hemagglutinin cleavage site [1,7,8]. Infected chickens, however, can shed virus very efficiently via the oropharynx, and we and others have observed limited shedding by the cloacal route despite no clinical signs of infection [9]. This unusual low pathogenicity of the avian H7N9 viruses makes an H7N9 infection in avian species hard to detect and monitor. Experts remain fearful of the potential for this virus to mutate into a form easily transmissible between humans, although to date, there has been no clear confirmation of human-to-human transmission [4].

Genetic analysis shows that the novel H7N9 virus is a triple reassortant virus carrying genes from H7N3, H9N2 and H11N9 or H2N9 avian influenza A viruses. It is assumed that the novel H7N9 subtype virus was generated by a single or double independent reassortment event in ducks or chickens in China [10]. Most of the H7N9 viruses carry certain mammalian adaptation signatures (i.e.,
PB2–627K, HA–226L), which have been proved critical in mammalian adaptation and transmission based on previous studies. [11], and especially the 226L in the H7 HA protein. Virulence and transmissibility of this novel H7N9 influenza virus have been characterized in different mammalian animal models, including mice, ferrets, macaques and pigs [7,9,12–14]. In ferrets, the H7N9 virus showed transmission by direct contact among ferrets and limited transmissibility by respiratory droplets [7,12–14]. Moreover, the novel H7N9 virus replicated efficiently in both upper and lower respiratory tracts of infected nonhuman primates (Cynomolgus macaques). Emergent H7N9 viruses isolated from recent human cases have increased infectivity and lethality in mice compared with avian H9N2 viruses and genetically related H7N9 viruses isolated from wild birds before 2013 [7,12]. Swine are an important intermediate host for influenza viruses [15]; one of the concerns is that H7N9 viruses may jump into pigs, they might replicate efficiently in this host, adapt to the mammalian receptor repertoire and reassort with endemic swine influenza viruses. Previous studies showed that pigs infected intranasally with H7N9 viruses did not transmit virus to contact pigs [14], while pigs infected intratracheally with H7N9 can transmit to sentinel animals with low efficiency (Liu et al.; submitted). These facts warrant increased surveillance for H7N9 influenza viruses in pigs.

Antivirals & Tamiflu® resistance of the novel H7N9 virus

The novel H7N9 virus rapidly spread over a large geographical region in China after the first reported case in March 2013 with the live poultry markets thought to be the source of human infections, suggesting that H7N9 viruses might be silently prevalent in poultry in China [10]. Continuing detection in poultry and sporadic human infections raises concerns on the emergence of a H7N9 virus, which can efficiently transmit between humans. Vaccination is a very efficient way to prevent influenza infection; however, no commercial vaccine specific for H7N9 is currently available. Moreover, humans lack any immunological memory against H7N9, which is another concern of its potential to result in a pandemic if easy human-to-human transmission is acquired.

Antiviral treatment is an important strategy in helping to control and prevent influenza infections. As recommended by the CDC in Atlanta, USA, antiviral treatment against influenza infections should be applied as early as possible, ideally within 48 h after onset of illness. Antiviral drugs are readily available to treat influenza infections including this novel H7N9 virus. For influenza infections, M2-ion channel blockers (e.g., amantadine and rimantadine) and neuraminidase inhibitors (e.g., oseltamivir, zanamivir and peramivir) have been mainly used as antiviral drugs, and these compounds are approved by the US FDA [16,17]. However, the H7N9 is resistant to both amantadine and rimantadine because an S31N mutation exists in the M2 protein, which confers M2-ion channel blocker resistance [18]. Therefore, the neuraminidase inhibitors are the only FDA-approved compounds that can be used for the treatment of the novel H7N9 infection and other M2-ion channel blocker-resistant influenza viruses [19].

Clinical studies show that oseltamivir treatment reduces the viral load in the respiratory tract of patients with H7N9 infection [5]. However, some patients with oseltamivir treatment failure had a poor clinical outcome. Further studies on the H7N9 viruses isolated from those patients showed that an R292K substitution occurred in the NA protein; this NA change is associated with resistance to all neuraminidase inhibitors including oseltamivir (Tamiflu®) [20]. Surprisingly, in humans treated with oseltamivir, the R292K substitution occurred as early as 2 days post treatment with the 292K genotype becoming the predominant virus population at 7 days post treatment. Neuraminidase inhibition assays using the resistant H7N9 virus showed 100- and 30-fold reduced susceptibility to the two FDA-approved inhibitors, oseltamivir and zanamivir, respectively [5]. Subsequently, neuraminidase inhibitor resistance of H7N9 viruses in humans resulted in antiviral treatment failure and a poor clinical outcome. Further studies confirmed that H7N9 isolates with a dominant 292K genotype are resistant to zanamivir, peramivir and oseltamivir although this resistance can be masked by a mixed R/K genotype on position 292 of the NA protein in a viral quasispecies population [21]. Rapid emergence of antiviral drug-resistant mutants after treatment with oseltamivir or zanamivir is raising concerns about the prevalence of such resistant H7N9 viruses in the humans and other mammalian populations. This emphasizes the importance of the development of new antiviral influenza drugs or the use of already developed FDA-approved drugs for other infectious diseases, which might also work against influenza. Other influenza antivirals are under development, including thiazides that are anti-influenza molecules targeting the viral hemagglutinin at the post-translational level [22]; Favipiravir (T-705), a novel viral RNA polymerase inhibitor [23] and Aprotinin, a protease inhibiting the cleavage of the HA protein [24]. None of these compounds, however, have been approved for clinical treatment for influenza infection.

Alferon N inhibits replication of oseltamivir resistant & sensitive H7N9 viruses in vitro

Type I interferons (IFN), including IFN-α and IFN-β produced by host cells in response to the presence of viral pathogens, play a critical role in pathogen clearance during infection [25]. Previous studies showed that the 2009 pandemic
H1N1 and the highly pathogenic H5N1 viruses are highly sensitive to the antiviral actions of type I IFNs [26,27]. Type I IFN upregulates the expression of several IFN-stimulated antiviral gene products such as protein kinase R (PKR), 2′,5′-oligoadenylate synthetase and the Mx protein [28]. The activated protein kinase R phosphorylates the eukaryotic initiation factor eIF2α, thereby oligoadenylate synthetase inhibits viral protein synthesis [28]; and the Mx protein interacts with viral components to block generation of new virus particles [26,30].

Alferon N (IFN-α-n3) is a natural IFN-α product derived from human leukocytes. In previous studies using severe acute respiratory syndrome (SARS) virus, Alferon N was the only IFN-based drug to be active against SARS virus at clinically achievable serum levels with the failure of other tested IFN-based clinical products [31]. Additionally, Alferon N has a better safety profile than recombinant IFNs [32]. We tested antiviral activity of Alferon N against the novel H7N9 virus in human alveolar epithelial cells (A549) using two human H7N9 isolates: A/Anhui/1/2013 (Anhui/1/H7N9) and A/Shanghai/1/2013 (Shanghai/1/H7N9). Both viruses were isolated from human cases in China. Sequence information showed that the Anhui/1/H7N9 contains the NA-292R residue and is sensitive to NA inhibitors; in contrast, the Shanghai/1/H7N9 contains a NA-292K residue that is associated with resistance to NA inhibitors. The genetic signatures of both viruses are summarized in Table 1. Oseltamivir (Tamiflu®), an NA inhibitor, was tested on A549 cell as a well-known and widely used anti-influenza drug.

Confluent A549 cells in 48-well plates were treated with different units of Alferon N (10,000, 1,000 and 100 IU/ml obtained from Hemispherx Biopharma) for 4 h before infection and untreated cells served as controls; thereafter, both Alferon N treated and untreated A549 cells were infected with the Anhui/1/H7N9 and Shanghai/1/H7N9 viruses at a multiplicity of infection of 0.01 under BSL3/BSL3Ag conditions. Combination of a short natural IFN-α preincubation and a multiplicity of infection of 0.01 simulate the conditions of an in vivo natural infection. A relatively small number of cells are
The emergence of an influenza pandemic is unpredictable. No universal influenza vaccine is available so far. The licensed anti-influenza drugs (M2-ion channel blockers and neuraminidase inhibitors) are limited in clinical treatment of infected patients because of rapid emergence of drug-resistant mutations in the targeted genes. One of the concerns of a potential influenza pandemic is high mortality (e.g., H5N1, H7N9). The rapid disease progression characteristic of pandemic influenza viruses and the emergence of resistance to inhibitors of viral function will require other approaches to limit or terminate disease and spread the virus. In addition to the rapid regulatory approval of Alferon N or other antiviral drugs for this indication, the development of novel anti-influenza drugs using different mechanisms or targeting different genes (e.g., polymerase genes, nucleoprotein gene and hemagglutinin gene, etc.) innate immune responses, and/or combination therapy is necessary for better pandemic defense.

Acknowledgements

We would like to thank RJ Webby from St Jude Children’s Research Hospital for supplying us with the A/Anhui/1/2013 virus stock and A García-Sastre from Icahn School of Medicine at Mount Sinai for supplying A/Shanghai/1/2013 virus stock. We would also like to thank Haixia Liu and laboratory coordinators from Biosecurity Research Institute (BSL3/BSL3Ag) located at Kansas State for providing technical support and NM Bouvier for cell culture compatible Tamiflu®.

Financial & competing interests disclosure

This work was partially funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract numbers HHSN266200700005C, by the U.S. Department of Homeland Security under Grant Award Number 2010-ST-AG0001, and by Hemispherx Biopharma Inc (HEB). Q Liu is a scientific adviser to Hemispherx Biopharma (HEB); J Richt is a scientific adviser and received funds from HEB; DR Strayer and WA Carter are management employees and shareholders of HEB; WM Mitchell is an independent member of HEB BOD and HEB shareholder. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Key issues

- Antiviral treatment is an important strategy in controlling and preventing influenza viral infections. Current pharmaceuticals approved for the prophylaxis and/or treatment of influenza inhibit the function of the neuraminidase and M2-ion channel viral proteins.
- High mutational rates are characteristic of influenza viruses, resulting in viruses with resistance to neuraminidase or M2 inhibitors. Such viruses present a high-risk human public health threat for emerging avian influenza viruses with high pathogenicity for humans such as H7N9.
- Some H7N9 isolates have gained resistance to neuraminidase inhibitors. Alferon N (natural interferon) has broad anti-viral activities and inhibits the replication of both wild-type and neuraminidase inhibitor-resistant H7N9 viruses.
- An imminent pandemic threat from H7N9 or other avian influenza viruses with resistance to neuraminidase and M2 inhibitor demands research on novel anti-influenza drugs targeting different viral genes and/or innate immune responses.
Emergence of a novel drug-resistant H7N9 influenza virus

Special Report

References

Papers of special note have been highlighted as:
• of interest
 ◦ of considerable interest

** Review of biological basis of alpha interferons. **

** Review of clinical outcomes following treatment of a wide range of diseases with recombinant interferons and natural interferons. **

Notice of correction

Information on page 4 of the article has been changed post publication and ‘mg/ml’ had been changed to ‘microgram/ml’.