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Abstract

Chikungunya virus (CHIKV), a mosquito-borne alphavirus of increasing public health significance, has caused
large epidemics in Africa and the Indian Ocean basin; now it is spreading throughout the Americas. The
primary vectors of CHIKV are Aedes (Ae.) aegypti and, after the introduction of a mutation in the E1 envelope
protein gene, the highly anthropophilic and geographically widespread Ae. albopictus mosquito. We review
here research efforts to characterize the viral genetic basis of mosquito–vector interactions, the use of RNA
interference and other strategies for the control of CHIKV in mosquitoes, and the potentiation of CHIKV
infection by mosquito saliva. Over the past decade, CHIKV has emerged on a truly global scale. Since 2013,
CHIKV transmission has been reported throughout the Caribbean region, in North America, and in Central and
South American countries, including Brazil, Columbia, Costa Rica, El Salvador, French Guiana, Guatemala,
Guyana, Nicaragua, Panama, Suriname, and Venezuela. Closing the gaps in our knowledge of driving factors
behind the rapid geographic expansion of CHIKV should be considered a research priority. The abundance of
multiple primate species in many of these countries, together with species of mosquito that have never been
exposed to CHIKV, may provide opportunities for this highly adaptable virus to establish sylvatic cycles that to
date have not been seen outside of Africa. The short-term and long-term ecological consequences of such
transmission cycles, including the impact on wildlife and people living in these areas, are completely unknown.
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Introduction

Chikungunya virus (CHIKV) is an arthropod-borne
virus (family Togaviridae, genus Alphavirus) that was

first isolated in Tanzania (Ross 1956, Mason and Haddow
1957). On the basis of its antigenic properties, CHIKV is
placed within the Semliki Forest complex. Among all the
medically important alphaviruses that belong to the same
antigenic complex, CHIKV is closely related to o’nyong-
nyong virus (ONNV), which was once considered a subtype
of CHIKV (Powers et al. 2000). CHIKV has caused numer-
ous epidemics in Africa and Asia, and is currently spreading
in the Americas, with over 1 million suspected cases and over
22,000 laboratory-confirmed cases in the Americas as of
January 7, 2015 (Centers for Disease Control and Prevention
2015, Pan American Health Organization, no date). An epi-
demic of unprecedented scale began in Kenya in 2004 and
then subsequently developed during 2005 in the southeastern
islands of the Indian Ocean (Chastel 2005, Consigny et al.
2006, Enserink 2006, Higgs 2006, Ligon 2006, Paganin et al.
2006). The Institut de Veille Sanitaire reported approxima-

tely 266,000 diagnosed CHIKV cases on the Reunion Island
up through February of 2007 (Pialoux et al. 2007). On Re-
union Island alone, approximately 40% of the population was
CHIKV seropositive after the 2006 outbreak (Gerardin et al.
2008), and approximately 63% and 75% of the populations of
Comoros and Lamu were estimated to have been infected on
the basis of retrospective serosurveys (Chretien et al. 2007).
The East/Central/South African (ECSA) genotype responsi-
ble for the Indian Ocean epidemic was also introduced into
the Indian subcontinent during 2006 resulting in an estimated
1.4 million cases that year (Pialoux et al. 2007). Cases
have occurred almost continuously in multiple countries ever
since, as described in an accompanying paper in this issue
(Sam et al. 2015).

In Africa, CHIKV is a zoonotic arbovirus with a life cycle
that principally involves primates and Aedes mosquitoes.
Although there are reports of virus or antibody being detected
in nonprimates, these species likely play no significant role in
the normal transmission cycle. Although the idea that birds
may play a role in the transmission cycle has been mentioned
in many papers, what seems to be a misconception has been
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based on the statement by Moore et al. (1974) that ‘‘In March
1968, an isolate was recovered from a golden sparrow (Ayi-
passer luteus) captured at Lake Chad in northern Nigeria
(G.E. Kemp, personal communication).’’ Subsequent sur-
veillance has indicated that birds are not involved in the
transmission cycle, and, indeed, it is known that the primary
vectors rarely if ever feed on birds (Faraji et al. 2014). On the
basis of data from many recent studies, it really is time to stop
perpetuating a myth, sometimes fueled by a public perception
(that I have personally heard often), that the name chi-
kungunya must be derived from an association with chickens.
In Asia, no sylvatic cycle has been observed. CHIKV is
similar to dengue viruses (DENV) where humans can de-
velop a relatively high viremia. Because of this, epidemics
can be sustained strictly via human–mosquito transmission.
Symptoms of CHIKV often resemble those of dengue fever;
in dengue-endemic regions, it may be misdiagnosed and
therefore underreported (Carey 1971). However, the ar-
thritogenic nature of CHIKV differs from the febrile illness
shared with other arbovirus infections and often results in
recurrent polyarthritis that persists up to several years. Such
chronic clinical manifestations have been found correlated
with the observation that CHIKV can often cause persistent
infection in muscle and joint tissues (Hoarau et al. 2010,
Hawman et al. 2013, Rohatgi et al. 2014).

During interepidemic periods, CHIKV is maintained in
Africa via a sylvatic transmission cycle involving a number
of species of mosquitoes including: Aedes (Ae.) aegypti, Ae.
africanus, Ae. luteocephalus, and Ae. furcifer-taylori, and
wild primates ( Jupp and McIntosh 1988). This is in contrast
to Asia where the virus is maintained in cycles between Ae.
aegypti or, most recently, Ae. albopictus and humans ( Jupp
and McIntosh 1988). These vectors are also widely distrib-
uted. Indeed, since the 1980s, Ae. albopictus has invaded and
become established in many parts of the world, including the
Americas and Europe (Benedict et al. 2007, Schaffner et al.
2013). The range expansion, primarily due to human activi-
ties related to global commerce, together with viral evolution
described below, has been a major contributory factor to the
spread of CHIKV.

CHIKV Molecular Evolution and Selection
in Mosquitoes

CHIKV and ONNV are closely related and share conserved
sequences and antigenic epitopes; however, CHIKV is trans-
mitted by Aedes spp. mosquitoes and ONNV is a unique arbo-
virus in that is primarily transmitted by Anopheles (An.)
gambiae. Therefore, an early molecular characterization of
CHIKV prior to the 2006 epidemic focused on the mechanisms
governing the vector specificity of both viruses (Vanlandingham
et al. 2005, 2006). Using cDNA infectious clones, the chimer-
ization of genetic materials between CHIKV and ONNV first
demonstrated that the distinction in vector specificity for Ae.
aegypti by CHIKV is determined by genetic sequences in the
structural genes (Vanlandingham et al. 2006). More recent ev-
idence has suggested that the vector specificity for An. gambiae
by ONNV is controlled by the genetic loci in its nsP3 gene
(Saxton-Shaw et al. 2013). However, the impact of single ge-
netic loci in both regions still remains to be characterized.

It has long been known that RNA viruses have an enor-
mous capacity for genetic variation due to the high error rate

of RNA virus polymerases. Geographically isolated lineages
often evolve, occasionally changing the vector or host spec-
ificity. Quasi-species populations generated during replica-
tion may contain a variant that is selected due to a
competitive advantage, such as the ability to replicate to
higher titers in a mosquito or vertebrate host, or to extend its
host range. This was recently demonstrated in CHIKV, where
a single mutation, alanine to valine at position 226 in the E1
envelope glycoprotein gene (A226V E1), facilitated CHIKV
replication in and therefore transmission by the highly an-
thropophilic Ae. albopictus (Tsetsarkin et al. 2007, 2011b).
Not only did this mutation facilitate the explosive Indian
Ocean epidemic, but also allowed substantial geographic
expansion of CHIKV throughout sub-Saharan Africa,
Southeast Asia, and into Europe (Thiberville et al. 2013).
Phylogenetic analysis of numerous CHIKV sequences has
identified three geographically associated genotypes: West
African, ECSA, and Asian. The ECSA and Asian strains were
calculated to have diverged within the last 150 years, with the
Asian clade splitting into an extinct Indian lineage and the
currently circulating Southeast Asian strains. Recent Indian
Ocean isolates form a monophyletic lineage descending from
the ECSA clade. The strains in this lineage contain three
positively selected codons—two in the capsid protein at co-
dons 23 and 27 and the E1-A226V mutation critical for the
adaptation of some CHIKV strains to Ae. albopictus (Volk
et al. 2010). The ongoing epidemic in the Caribbean sus-
tained by Ae. aegypti involves the Asian genotype (Van
Bortel et al. 2014), which does not have the A226V mutation
responsible for a high infectivity for Ae. albopictus. In No-
vember, however, it was reported that the ECSA genotype of
CHIKV was detected in Brazil (Maron 2014). Although
isolates did not contain the A226V mutation, nature has al-
ready demonstrated multiple independent occurrences. In
Brazil, only Ae. aegypti is involved in CHIKV transmission
(Teixeira et al. 2015). However, if Ae. albopictus begins to
play a role as a vector in the Americas, for example in Pa-
nama where it is common (Miller and Loaiza 2015), it is
certainly conceivable that there may be selection for the more
transmissible mutated form of CHIKV.

Laboratory studies have found that Ae. albopictus is a
competent vector for CHIKV (Tesh et al. 1976, Turell et al.
1992); however, it had not been implicated as a major vector
in previous CHIKV epidemics. Tesh et al. (1976) infected 16
different geographic strains of Ae. albopictus with the pro-
totype ECSA Ross strain and the Barsai strain of CHIKV.
Turell et al. (1992) infected 10 strains of Ae. albopictus and
seven strains of Ae. aegypti with the 15561 CHIKV strain
(originally isolated in Thailand from human serum in 1962).
This study found that mosquitoes collected at various loca-
tions possessed similar characteristics for vector competence
when fed 5.3 Log10 plaque-forming units (pfu)/mL CHIKV:
70–100% of Ae. albopictus and 14–28% of Ae. aegypti were
infected at day 14 postinfection (Turell et al. 1992). La-
boratory-based vector competence studies have demon-
strated transmission by other species, including Ae. fulgens,
Ae. furcifer, Ae. togoi, Ae. triseriatus, Ae. vexans, Ae. vitta-
tus, Eretmapodites chrysogaster, and Opifex fuscus (for re-
view, see Coffey et al. 2014)

The absence of Ae. aegypti on Reunion Island led to the
hypothesis that a change in the viral genotype may have af-
fected infectivity for Ae. albopictus during the 2005 Indian
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Ocean epidemic (Enserink 2006, Reiter et al. 2006, Schuf-
fenecker et al. 2006). This was confirmed by sequence
analysis and vector competence testing of strains collected
during the epidemic (Tsetsarkin et al. 2007, 2011a) and
collection and testing of vectors from affected areas. A total
of 240 mosquito pools were collected by the Direction Ré-
gionale des Affaires Sanitaires et Sociales (DRASS) and
processed by the Service de Santé des Armées (SSA), Mar-
seille. On the basis of CHIKV-positive pools of Ae. albo-
pictus, it was suspected that Ae. albopictus was the main
vector of CHIKV on the island. During this time, Ae. albo-
pictus was also identified as a vector in places where Ae.
aegypti was also prevalent, including Madagascar, India, and
Gabon (Thiberville et al. 2013).

Multiple factors may have contributed to recent epidemics,
including exposure of a susceptible naı̈ve population, the
abundance of larval habitats, and climate. In the Americas,
the relatively low incidence of infections involving other
alphaviruses, for example Mayaru (Zuchi et al. 2014), may
also facilitate spread of CHIKV, because any potential for
cross-protective immunity is low. Human epidemics of
CHIKV in Africa historically coincided with rainy periods
that increased sylvatic vector densities (Lumsden 1955), but
outbreaks along the coast of Kenya in 2004 followed a period
of unusually warm and dry conditions, during which time
improper water storage may have facilitated vector breeding,
and increased temperatures could have enhanced CHIKV
transmission by mosquitoes breeding in close proximity to
people (Chretien et al. 2007, Gould and Higgs 2009). The
CHIKV strain implicated in the large Indian Ocean epidemic
was related to previous ECSA isolates, and the Indian Ocean
epidemic followed the outbreaks in Kenya, Comoros, and
Seychelles, as well as some regions of Madagascar in 2004
(Schuffenecker et al. 2006, Chretien et al. 2007, de Lam-
ballerie et al. 2008). The A226V E1 mutation occurred during
this outbreak and facilitated the rapid spread of CHIKV via
Ae. albopictus. In Ae. albopictus, CHIKV infectivity was
significantly higher and viral dissemination and transmission
to suckling mice was more efficient for CHIKV with valine at
E1-226, but this mutation had no significant effect on CHIKV
transmission by Ae. aegypti (Tsetsarkin et al. 2007).

Interestingly, the A226V E1 mutation has arisen inde-
pendently at least four times in response to a requirement of
transmission by Ae. albopictus (i.e., in areas without Ae.
aegypti or areas populated by Ae. albopictus and Ae. aegypti).
The result is that Ae. albopictus has become a major CHIKV
vector (de Lamballerie et al. 2008, Volk et al. 2010, Tset-
sarkin et al. 2011a). Although the A226V E1 mutation itself
modulates CHIKV infectivity and transmission by Ae. al-
bopictus, this mutation is limited to CHIKV ECSA strains,
and other mutations in E1 and E2 have been found to block
the A226V E1-mediated adaptation to Ae. albopictus: E2-
T211I in most ECSA strains and E1-A98T in all endemic
Asian strains (Tsetsarkin et al. 2009, 2011a). An additional
mutation, E2-L210Q, was subsequently found to increase
CHIKV dissemination in Ae. albopictus but had no effect on
CHIKV fitness in Ae. aegypti (Tsetsarkin and Weaver 2011).
Recent work suggests that additional adaptive mutations have
arisen in the envelope protein of CHIKV strains that have
increased fitness in Ae. albopictus. It has been predicted that
combinations of these additional adaptive mutations would
evolve in endemic strains in India and Southeast Asia, me-

diating even greater fitness in Ae. albopictus, and that these
strains would spread globally (Tsetsarkin et al. 2014). In-
terestingly, an outbreak in 2013 involving the Asian clade of
CHIKV on Yap Island in the Federated States of Micronesia
involved Ae. hensilli (Savage et al. 2014). Virus detection in
one pool of male mosquitoes suggested vertical transmis-
sion. A laboratory study demonstrated that Ae. hensilli was
also highly susceptible to infection with a Comoros 2005
strain of the ECSA clade (Ledermann et al. 2014). With
respect to vertical transmission, although there have been
occasional reports from surveillance and laboratory confir-
mation that CHIKV may be transmitted transovarially
(Agarwal et al. 2014), this seems to be such a rare phenom-
enon that it likely has no significance in the natural trans-
mission cycle.

An increased vector range further increases the risk of
importing CHIKV into new ecological niches through in-
fected travelers returning from destinations experiencing
CHIKV epidemics. Countries in Europe, the Caribbean Ba-
sin, and the United States, where Ae. albopictus and/or Ae.
aegypti are established and widely distributed, are at risk of
CHIKV establishment if a viremic person is fed upon by
these vectors. There have been numerous imported cases of
CHIKV into Europe (Belgium, France, Spain, Germany,
Switzerland, United Kingdom, and the Czech Republic), with
as many as 1000 imported cases were reported in western
Europe in 2006 alone (Thiberville et al. 2013). In addition,
autochthonous CHIKV transmission with Ae. albopictus as
the vector was documented in Italy in 2007 (Angelini et al.
2007) and France in 2010 (Gould et al. 2010). The first cases
of autochthonous CHIKV transmission in the Americas were
documented in December, 2013, in Saint Martin (Vega-Rua
et al. 2014). By the end of December, 2014, greater than
800,000 confirmed or probable CHIKV cases had been re-
ported in 30 Caribbean countries/territories (Pan American
Health Organization, no date). CHIKV cases have also been
documented in Argentina, Belize, Bermuda, Bolivia, Brazil,
Chile, Costa Rica, Ecuador, El Salvador, French Guiana,
Guatemala, Guyana, Honduras, Mexico, Nicaragua, Panama,
Paraguay, Peru, Suriname, and Venezuela (Pan American
Health Organization, no date). Between May and December
of 2013, over 2000 cases were imported into the United
States, with 11 cases of autochthonous transmission docu-
mented in Florida (Fig. 1; Centers for Disease Control and
Prevention 2015b). Symptoms of cases and characteristics of
patients in the United States have recently been described by
Lindsey et al. (2015). The realization that CHIKV could
become established in Europe and/or the Americas has
caused considerable concern; CHIKV was added to the list of
diseases requiring mandatory notification in France and was
designated as a Category C agent by the National Institute of
Allergy and Infectious Diseases (NIAID), emphasizing the
need for more research on the virus.

Mosquito Responses to Infection

CHIKV is associated with a high case-to-infection ratio,
with most people who have been infected developing
symptoms. However, as with other mosquito-borne viruses,
the vectors display no overt signs of infection and no obvious
effects on longevity or reproductive capacity despite the
presence of viral titers in excess of 10,000,000 virions. As
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described below, although mosquitoes process the compo-
nents of antiviral responses, given the large number of human
cases, these would seem not to effectively control viral in-
fection of mosquitoes in nature. Because these responses and
other factors have been discussed as potential new ap-
proaches to control mosquito-borne pathogens, they are de-
scribed below.

The most well-characterized invertebrate antiviral defense
system is RNA interference (RNAi), which can control ar-
bovirus replication and transmission in mosquitoes or in-
vertebrate culture through the production of 21-nucleotide
small interfering RNAs (siRNAs) from double-stranded
RNA replicative intermediates recognized by the Dicer pro-
tein Dcr-2. siRNAs are used to target the viral genome for
degradation in a sequence-specific manner. The modulation
of the mosquito innate immune response to arbovirus infec-
tion by RNAi has been demonstrated previously for alpha-
viruses related to CHIKV, including Semliki Forest virus
(SFV) (Fragkoudis et al. 2008, Siu et al. 2011), Sindbis virus
(Myles et al. 2008, Khoo et al. 2010), and ONNV (Keene
et al. 2004). CHIKV infection of Vero cells was inhibited by
siRNAs against nsP3 and E1 (Dash et al. 2008) and E2 and
nsP1 (Parashar et al. 2013); CHIKV replication in mice was
inhibited by siRNAs against E2 and nsP1 (Parashar et al.
2013); and plasmid-based small-hairpin RNAs inhibited
CHIKV replication in HeLa cells and prevented CHIK dis-
ease onset in suckling mice (Lam et al. 2012), demonstrating
that CHIKV infection can be modulated by RNAi in mam-
malian cells. Viral siRNAs matching the CHIKV genome
were produced by infected Ae. albopictus and Ae. aegypti,
and higher levels of viral RNA resulted in more viral siRNA
molecules and, in Ae. albopictus, more robust modulation of
virus infection (Morazzani et al. 2012).

A similar RNAi pathway, the PIWI-interacting RNA
(piRNA) pathway, has also been shown to have antiviral
activity through a Dicer-independent mechanism that gen-
erates 25- to 30-nucleotide piRNAs (Morazzani et al. 2012,
Schnettler et al. 2013). SFV infection of U4.4 (Ae. albo-
pictus) and Aag2 (Ae. aegypti) cell lines resulted in the

production of piRNA-like molecules, and knockdown of
proteins involved in the piRNA pathway enhanced SFV
replication (Schnettler et al. 2013). piRNA-like, viral, small
RNAs were produced in the soma of CHIKV-infected Ae.
albopictus and Ae. aegypti, and these small RNAs modulated
the pathogenesis of a recombinant CHIKV in dcr-2 null
mutant C6/36 (Ae. albopictus) cells (Morazzani et al. 2012).

Mc Farlane et al. (2014) recently evaluated the role of the
RNAi pathway in mosquitoes infected with CHIKV.
Knockdown/silencing of specific pathway components
in vitro permitted CHIKV to replicate to higher levels, sug-
gesting that when expressed to natural levels, these compo-
nents would control replication. Infection of cells with
CHIKV resulted in a suppression of the Toll signaling path-
way via host cell shut-off, although antiviral activity was not
mediated by either the JAK/STAT, IMD, or the Toll path-
ways. In vivo silencing of Ago-2 by inoculation of specific
double-stranded RNA (dsRNA) resulted in a significant in-
crease in the number of virus particles in the midgut at 4 and 7
days postinfection and more particles in the head. These ef-
fects were, however, time dependent and transitory.

MicroRNAs (miRNAs) are 22-nucleotide, endogenous,
noncoding RNAs that regulate gene expression in many bi-
ological processes, including the host defense response
against pathogens, at the posttranscriptional level. Jain et al.
(2014) recently demonstrated that miRNA expression was
differentially up- or downregulated in An. stephensi after
blood feeding with or without Plasmodium parasites. The
miRNA pathway appears to be important in Ae. aegypti as
well, because miRNA levels were significantly modulated in
mosquitoes infected with the flavivirus dengue type 2
(Campbell et al. 2014). Although no work has been published
on miRNAs produced in response to CHIKV infection, rep-
lication of the alphavirus eastern equine encephalitis virus
(EEEV) was restricted in myeloid-lineage cells by a host-cell
miRNA that bound to a region essential for efficient infection
of mosquitoes (Trobaugh et al. 2014).

In mosquitoes, phenoloxidases (PO) play a role in several
key physiological functions, including cuticular sclerotization,

FIG. 1. The total number of imported and autochthonous cases of chikungunya based on data from ArboNET. Note: Data
were not available for June 17, November 18 and 25, and December 9, 23, and 30.
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wound healing, and melanization of parasites (Shiao et al.
2001) The PO cascade may also play a role in mosquito an-
tiviral immunity. This cascade was activated in U4.4 cells by
SFV infection, and SFV replication was enhanced when PO
activity was blocked by a recombinant virus encoding an in-
hibitor of the PO cascade. Replication of the same recombinant
SFV was enhanced in Ae. aegypti, suggesting the PO cascade
also functions in vivo (Rodriguez-Andres et al. 2012).

In addition to the well-characterized RNAi response, it is
noteworthy that heat shock proteins (HSPs) can also be an-
other important physiological response of infected insects
against CHIKV and closely related ONNV. Due to their
function as chaperones that assist in the folding of proteins,
the upregulation of HSPs has been found advantageous for
the establishment of CHIKV infection in Ae. aegypti, which
has been previously heat shocked in its larval stage (Mourya
et al. 2004). Presumably, the upregulation of the expression
level HSPs can promote the transport of nascent viral proteins
in the intracellular trafficking process into the endoplasmic
reticulum (ER). Such a hypothesis can also be supported by
the evidence derived from the proteomic analyses of infected
mosquitoes, showing the more abundant expression of cy-
toskeleton and ER-associated translocator genes (Tchan-
kouo-Nguetcheu et al. 2012, Rider et al. 2013). On the other
hand, because of its role in the stress response of organisms,
HSP70B, for example, was also found to suppress the in-
fection of the ONNV in An. gambiae (Sim et al. 2005, 2007).

The potential inclusion of genetically engineered mos-
quitoes to augment traditional mosquito control measures to
combat vector-borne diseases, for example, the release of
insects carrying a dominant lethal gene (Release of Insects
with Dominant Lethal [RIDL�] mosquitoes), has been
widely discussed (Higgs 2013, Alphey 2014). Although
RIDL Ae. aegypti mosquitoes have already been released
in several countries, Miller and Loaiza (2015) recently
expressed concern that a consequence of the release of ge-
netically modified Ae. aegypti in Panama may be that
Ae. albopictis populations expand. The repercussions of re-
placing Ae. aegypti with Ae. albopictus could impact CHIKV
transmission and might even drive the selection of mutant
viruses. Clearly, these concerns need to be evaluated.
The recent announcements that the US Food and Drug
Administration is considering a proposal to release millions
of RIDL Ae. aegypti, in Florida to control dengue (www
.cbsnews.com/news/fda-debates-releasing-genetically-
modified-mosquitoes-into-florida-keys/) is especially rele-
vant, given that this is the only US state where autochthonous
cases of chikungunya have occurred. An alternative approach
to using genetically engineered mosquitoes is based on
mosquitoes infected with an endosymbiotic bacterium Wol-
bachia (Higgs 2013). The effects of various Wolbachia
strains on CHIKV replication have been tested in mosquitoes
transfected with Wolbachia in recent years, reviewed by
Rainey et al. (2014). In Ae. albopictus, wAlbA and wAlbB
strains had no effect on CHIKV infection (Mousson et al.
2010), but wMel in the presence of wAlbA and wAlbB re-
duced CHIKV transmission in a different study (Blagrove
et al. 2013). In Ae. aegypti, both wMel and wMelPop reduced
CHIKV virus proliferation in separate studies (Moreira et al.
2009, van den Hurk et al. 2012). Studies of Wolbachia in Ae.
aegypti have suggested that Wolbachia interferes with ar-
bovirus replication in the mosquito by stimulating the mos-

quito immune response, including activating the Toll
pathway (Moreira et al. 2009, Pan et al. 2012), or may
compete with arboviruses for necessary cellular components
on the basis of the localization of Wolbachia to mosquito
tissues important for arbovirus replication, such as the fat
body and brain (Moreira et al. 2009). How natural infections
with different Wolbachia species and other symbiotic or-
ganisms in different species of mosquitoes might influence
vector competence for arboviruses is unknown.

Mosquito Saliva: Its Effects on the Vertebrate
Immune System and Arboviral Infections

Increasing evidence demonstrates that vector saliva, in-
cluding that of mosquitoes, modulates the vertebrate immune
system and the course of pathogen infections (Belkaid et al.
1998, Kamhawi et al. 2000a,b, Morris et al. 2001, Schneider
et al. 2004, Billingsley et al. 2006, Styer et al. 2006). Mos-
quitoes inject saliva into the skin during probing (Ribeiro and
Francischetti 2003), and thus virus may be delivered intra-
dermally (Turell and Spielman 1992, Turell et al. 1995).
Mosquito saliva contains numerous components, many of
which may be pharmacologically active (Racioppi and
Spielman 1987, Ribeiro 1987, Ribeiro 1989, Kerlin and
Hughes 1992, Ribeiro 1992, Ribeiro and Nussenzveig 1993,
James 1994, Ribeiro et al. 1994, Champagne et al. 1995a,b,
Stark and James 1996, Ribeiro and Valenzuela 1999, Va-
lenzuela 2002, Valenzuela et al. 2002, Ribeiro and Fran-
cischetti 2003, Calvo et al. 2004, Ribeiro et al. 2004,
Wasserman et al. 2004). Saliva secreted into the feeding site is
often associated with hypersensitivity reactions commonly
seen after mosquito feeding. Types I and III hypersensitivity
reactions reflect an antibody response to salivary proteins, and
type IV is initiated as a cellular response. Enhancement of
arboviral infections by mosquito saliva has now been dem-
onstrated for several viruses, including Cache Valley virus
(Edwards et al. 1998), La Crosse virus (Osorio et al. 1996),
Sindbis virus (Schneider et al. 2004), vesicular stomatitis
virus (Limesand et al. 2000, 2003), and West Nile virus
(Schneider et al. 2006). Saliva has been identified as affecting
various cells and cytokines (Zeidner et al. 1997, Wanasen
et al. 2004), and direct links have been established for sali-
vary-induced effects on the immune system as a mechanism
to explain enhancement of viral infections (Limesand et al.
2000, 2003, Schneider et al. 2004, 2006). Additionally,
Thangamani and Wikel (2009) found the expression of vari-
ous Ae. aegypti salivary gland genes was altered in response
to blood feeding. Of 463 studied transcripts, 2.8–11.6% of
genes were upregulated and 8–20% of genes were down-
regulated. Not surprisingly, known upregulated genes included
defensins, mucins, and other immune-related proteins, whereas
odorant-binding protein was significantly downregulated.

Thangamani et al. (2010) compared the host (murine)
immune response to CHIKV delivered by mosquito bite and
by needle inoculation by examining the cutaneous cytokine
responses using quantitative RT-PCR. TH2 cytokines were
significantly upregulated and TH1 cytokines were signifi-
cantly downregulated in the skin after the bite of uninfected
and CHIKV-infected Ae. aegypti. Expression of interleukin-1
(IL-2) and IL-4 were both significantly upregulated in the
skin exposed to CHIKV-infected mosquito bites compared to
uninfected mosquito bites, and CHIKV inoculation-induced
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interferon-c (IFN-c and Toll-like receptor 3 (TLR-3) upre-
gulation was suppressed by the presence of mosquito saliva.
Eosinophils were observed at the sites of mosquito bites but not
needle inoculation, and more cells were recruited to the sites of
CHIKV-infected mosquito bites than to the sites of uninfected
mosquito bites. Overall, this study on CHIKV is consistent with
previous studies of other viruses that demonstrated a significant
role for mosquito saliva in the early infection events and im-
mune response to arbovirus transmission (Thangamani et al.
2010). A recent study (Her et al. 2014) demonstrated a key role
of TLR3-mediated antibodies with respect to CHIKV infec-
tion, replication, and pathology in the vertebrate host. This
observation may explain the importance of mosquito-delivered
CHIKV impacting TLR-3 expression.

Conclusions

Clearly, CHIKV is an increasing global health concern due
to the recent explosive emergence of the virus in and out of
Africa and Asia to naı̈ve regions of Europe and the Americas.
Diagnosis and treatment efforts are complicated by the con-
comitant circulation of CHIKV with the sometimes clinically
indistinguishable DENV. The role of this overlap in epide-
miology and transmission of both viruses remains to be seen.
Considerable research efforts have been directed to under-
standing the epidemiology, molecular biology, and evolution
of CHIKV, as well as the virus–vector interactions driving
CHIKV transmission and worldwide spread. However, this
trend must continue because large gaps in our knowledge
about key driving factors behind the geographic expansion of
CHIKV still exist. The virus is now encroaching into tropical
South and Central American countries and the United States
(Staples and Fischer 2014), and an important question is
whether it will become permanently established? The suc-
cessful adaptation of CHIKV for increased infectivity to Ae.
albopictus that was mediated by a single amino acid substi-
tution demonstrates the plasticity of this virus to exploit new
niches. Therefore, one wonders if we will see sylvatic
transmission cycles involving New World primates (Higgs
and Vanlandingham 2015), as has occurred with the yellow
fever virus. Despite enormous efforts to control yellow fever
by multinational mosquito eradication programs and a highly
efficacious vaccine, the virus has maintained a presence in
the Americas and continues to cause rural infections and
human fatalities. The zoonotic West Nile virus became rap-
idly established throughout the United States and in other
countries largely because of its capacity to infect many spe-
cies of vertebrates and mosquitoes. As we know it, CHIKV
has more limited zoonotic potential; however, with new
territory comes new opportunity.

With regard to controlling the spread of CHIKV and re-
ducing numbers of CHIKV infections, at present we must
rely on traditional, proven approaches, including chemical-
based mosquito control, source reduction, and personal pro-
tection with repellents or behavioral avoidance. Efforts are
ongoing to produce efficacious vaccines, and new strategies
to suppress competent mosquito populations are becoming a
reality. Given the very large number of human infections with
various arboviruses that result from millions of mosquitoes
being infected, one cannot help but conclude that, although
laboratory studies have demonstrated the existence of
mechanisms that can apparently confer some level of resis-

tance to infection, in nature they are simply not effective in
preventing viral infection. This may be because they are not
as effective as laboratory experiments would seem to suggest,
or it may be because the virus has evolved to suppress the
mosquito innate immune responses or to be unaffected by
these responses. Further studies are required to provide a
better understanding of the complex interplay between
viruses and their mosquito vectors (Zouache et al. 2014) so
that we can develop a realistic view of whether or not ma-
nipulation of the mosquito physiological/immunological
processes that are involved in the virus–vector relationship
could ever really be applied as a strategy for reducing the
impact of arboviruses. Effective implementation of current
and new approaches to maximal effect will depend on timely
surveillance and basic entomological knowledge, for exam-
ple, of feeding behaviors and host preferences to allow tar-
geting of vector species appropriately.

Clearly, CHIKV is a virus that we need to monitor and
focus on so that we can better understand it and anticipate
things to come. Perhaps then we can develop integrated ap-
proaches to prevent future epidemics and begin eradication in
the regions of the world that it has recently invaded.
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